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This paper deals with Stokes flow due to a stationary axially symmetric slender 
body in a uniform stream, which may be either parallel or perpendicular to the 
axis of the body. The effect of the body is represented by distributions of singu- 
larities along a segment of its axis of symmetry. Systems of linear integral 
equations for these distributions are obtained, and the first few terms of uniformly 
valid (in the Stokes region) asymptotic expansions in the slenderness ratio are 
discussed. The leading terms yield the expected result that the drag on the body 
in a transverse stream is double that in an axial stream. The second approxima- 
tion to the ratio of these two drags is also independent of the body shape. 

1. Introduction 
It has been conjectured for some years that if the Reynolds number is very 

small, a slender body of revolution falls twice as fast axially as it does trans- 
versely. The phenomenon has been illustrated by Taylor (1967), who has also 
(Taylor 1969) given a theoretical study of the problem. Otherwise, apart from 
the classical case of the spheroid and some important pioneering work of Burgers 
(1938) on straight cylinders, work on slow flow past slender bodies seems to have 
been confined to axial motion. Reliable experimental data also seem to be lacking. 

We consider the Stokes flow past a slender axisymmetric body whose 
equation is 

(1.1) 

where max R(z) = a. (1.2) 

r = (x2+y2)4 = €R(Z) ( - a  < x ,< a) ,  

-u<z<a 

It is assumed that the body has rounded nose and tail; more specifically, we 
assume that 

as x + a ,  together with a similar condition as x -+ - a. Certain smoothness require- 
ments are imposed on R(z)  in § 3. 

The flow is represented by distributions of singularities along the axis of the 
body, as was done by Tuck (1964) in the case of axial flow. It is shown that, to 
lowest order at  least, this leads to an approximate solution of our boundary-value 
problem (for the Stokes equations) that is valid uniformly over the flow field,? 

t We are not concerned in this paper with the far (Oseen) field, but only with the Stokes 
solution. 

R2(z) N A(a-z )  (A + 0 )  (1.3) 
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including the regions near the ends of the body. Handelsman & Keller (1967) 
have shown that in the analogous potential problem the asymptotic solution can 
be carried out to all orders, and there seems to be no reason to doubt that this is 
the case for Stokes flow also. 

An a.nalysis of this kind was used by Taylor (1969), who formulated approxi- 
mate integral equations for the stokeslet distributions in the two cases of axial 
and transverse flow and found that the operator in the transverse case was half 
that in the axial case. Since the drag on the body is the sum over the stokeslet 
distribution of the appropriate elementary drags, this shows that for a given 
speed of descent the drag experienced by the body in the transverse case is double 
that in the axial case. However, Taylor’s work contains an error in sign in one 
term in one of the operators which invalidates this reasoning. (See (3.14) and 
(6.1 1 )  below, and theremark after (6.12).) In the present work we develop a more 
elaborate analysis which shows that the dominant parts of the two operators 
(they dominate by a factor In E )  do in fact differ by a factor of two; and in $ 6 we 
find that Taylor’s conclusion that the ratio of the drags equals two is valid, 
though only to logarithmic order. 

As in slender-body potential theory, it is necessary to restrict the singularities 
to a proper subset of the interval -a  < z < a. Failure to observe this precaution 
leads to singularities in the velocity field at  the ends of the body. The technique 
used by Handelsman & Keller (1967) is applied in 3 4 to find the endpoints of the 
distribution in the axial case, but it is perhaps more direct to use explicitly, 
following Moran (1963), the condition of uniform validity of the solution near the 
ends of the body; this is outlined in $ 5 .  

2. Axial flow: the exact problem 
We consider the Stokes flow past the body (1.1) when a velocity ( O , O ,  - U )  at 

infinity is prescribed. The effect of the body on this uniform flow is represented 
by a distribution of stokeslets of strength f(z), -a < a < z < p < a, and a distri- 
bution of irrotational sources of strength g(z) ,  -a  < y < z < 6 < a, the axis of 
the stokeslets being along the axis Ox of the body. 

The velocity components due to a single such stokeslet of unit strength located 

in the r and z directions respectively. We introduce a stream function @ defined by 

so that the stream function for a stokeslet of unit strength is 

The corresponding expressions for an irrotational source are 

(2.2) 
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The functions f and g are determined by the boundary conditions on the body; 
these can be taken to be that the perturbation velocity and stream function 

(2 .5 )  
satisfy 

w(r = s R ( z ) ,  z )  = U ,  $(r = ER(z),  x )  = gUe2R2, 

on - a  < z < a. When w and $ in these equations are written in terms off and g 
we obtain a pair of simultaneous integral equations to be satisfied on -a  < x < a, 
namely 

These are the equations given by Tuck (1970).  In  deriving (2.7) we have used the 
fact that the total source strength must vanish: 

The work that follows in $8 3 to 5 will be concerned with the solution of these 
equations. 

3. Axial flow : the equations to first order 
In this section we seek the lowest-order solutions of (2 .6)  and (2 .7 )  in the form 

(3 .1)  

To do this we require approximations to the integrals occurring in (2 .6 )  and (2 .7) .  
The form of (2 .7)  suggests that go = 0; this is confirmed in $ 4 and we defer con- 
sideration of the integrals in (2 .7)  until then. To lowest order, that is when terms 
of algebraic order in E are ignored, we are concerned only with the stokeslet 
distribution, and the equation for this reduces to 

f(Z, 4 = fdz,  4 + O(E2), g(z, 4 = g,(z, €1 + O(E2). 

(3 .2)  

We require an expansion for €3 0 of each integral in (3 .3) .  With the stretching 
transformation s = eu, and the notation 

u(2u2++2) 
h(s) = f ( Z - S ) ,  k ( u )  = 

(u2 + R2)t ’ (3.4) 

the first integrand in (3 .3)  may be written (with the x-dependence suppressed) 

@(z, 8, E )  = (l/s) h(s) k(a ) .  (3.5) 
26-2 
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(The singular factor l/s is isolated for later convenience.) For E+ 0 with s fixed 
and positive, we expand k ( s / ~ )  up to  en and obtain, on reintroducing cr, the ‘outer’ 
expansion En @ = (l/s) h(s) E,Ic(s/a) 

where En is the outer-expansion operator defined in general by Fraenkel(1969a), 
which in our case effects the operation described above. The coefficients k, in 
(3.6) are found by expanding k( cr) in (3.4) for cr + 00. 

Similarly, for e-+ 0 with cr fixed and finite, we expand h ( m )  up to an and obta.in, 
on reintroducing s, the ‘inner ’ expansion 

@ = (l/s) k(cr) H, h ( w )  

Es (l/s)k(cr){h,+h,s+ ... +h,sn), 13.7) 

where H, is the inner-expansion operator, and the coefficients h,,, are found 
from (3.4). 

We now form the ‘composite’ expansion 

C,, CD = (l /s)  {hE, k + k H ,  h - (H,  h)  (En k)}; (3.8) 

its error then satisfies 

s (@-CqagL@) = (h-H,h) (k- E,k)  

(3.9) - - O(sn+lcr-n-l I f  (n+l) I max ) - - O(en+llf(n+l)lmax), 

and this holds uniformly over s and cr; moreover as a + O  we have no singular 
behaviour : 

@ - C,, @ = O ( ~ n g - n  I f(n+’)lmax) = O(P If(n+l)lmax). (3.10) 

Thus, there exists A independent of s, cr, E (but not of x )  such that 

l@-Cm,@l < A If(n+l ) ]maxEn/( l+g) .  (3.11) 

Note that f depends on 8. Our construction of C,, @ is equivalent to  the method 
of Handelsman & Keller (1967), but is a little more direct because of Fraenkel’s 
(1 9696) observation that the formalism of inner and outer expansions is appro- 
priate to integrands having a product structure like that of @. 

The details of our procedure for approximating the integrals is given in 
appendix A, where i t  is confirmed that the remainder term resulting from t h e  
error (3.11) is small compared to  the terms resulting from Cn, 0. This work can 
be carried to arbitrary order provided f is sufficiently smooth; from (3.11) it is 
seen that expansion to  nth order requires f ~ C ~ + l [ a , P ] , t  and this imposes 
smoothness requirements on R(x). The expressions obtained below in (3.17) to  
(3.19) are consistent with this requirement if In {(a2 - x2)4/R(x)} E C2[ - a,  a].  It 
seems likely that the expansion will be valid to  all orders if 

In { (a2 - x2)4/B( z ) }  E C“ [ - a,  a]. 

t Here Cn+l[a, p] denotes as usual the space of functions with continuous (n. + 1)th 
order derivatives on [a,/?]. No confusion should arise with C,, above. 
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Working to order .n = 0 only we have 

Eok = 2, Hoh = f ( z ) ,  

405 

(3.12) 

Similar treatment is applied to the second integral in (3.3). This equation then 
becomes 

On evaluating the last two integrals and approximating them by neglecting con- 
tributions which are O(e21n e) uniformly, and rearranging the first two integrals, 
we obtain the lowest-order form (with terms of algebraic order in E ignored) of 
our equation for the stokeslet distribution f ( x )  : 

(3.14) 

This is essentially the equation given by Tuck (1964). It has been assumed 
following Handelsman & Keller (1967), that 

cc = -a+0(e2),  /3 = a+O(e2). (3.15) 

The solution of the integral equation (3.14) is a matter of some difficulty. One 
possible procedure is suggested by Tuck (1964); this is to express f o ( z )  as an 
infinite series of Legendre polynomials, (3.14) giving an infinite system of linear 
algebraic equations for the coefficients. We will content ourselves here with 
finding the first four terms of an expansion in powers of (lne)--l; we write 

f o ( z ,  4 = (In e)-lf01(4 + (Ine)-2fo,(z) + * * - 2  (3.16) 

and substitution in (3.14) yields 
fOl(Z) = - Y u, (3.17) 

d2. (3.19) 
a In [(a2-P)+/R(5)] -In [(a2-z2)t/R(z)] 

-a IS-4 

Higher terms can be found from the recurrence relation 

The dominant term is thus independent of the shape R(z )  of the body; this is 
because, to this order, we are effectively reducing the axial velocity to zero along 
the axis -a < z < a of the body. Higher terms depend on R(z). 
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In  the special case of the spheroidal body 

R(z) = (a2-z2)4, (3.21) 

the term 41n [2(u2 - z2)*/eR] in (3.14) is a constant, so we ca,n solve exactly forf,: 

fo (z ,e )  = U/(41n(Z/e)-2). (3.22) 

The total force on the (general) body is a drag 

(3.23) 

(where p is the coefficient of viscosity), the irrotational sourcw making no 
contribution. The above results thus give 

1 
(3.24) 

) D = 47rpUu - (lne)-l- t(lnE)P2 (1” In [2(a2 - z2)4/R] dz - 1 + O[(ln~)-~]  1 --a 

in the general case, and 

D = 47rpUa/(ln(2/s)-$)+O(s21ne) (3.25) 

for the spheroid. The dominant term in (3.24) was given by Tuck (1964). The 
spheroid result agrees with that of Lamb (1932, p. 605), obtained by solving the 
Stokes equations by separation of variabIes. 

4. Axial flow: the equations to second order 
In this section we approximate (2.6) and (2.7) up to and including terms of 

order e2. For the expansion of the first integral in (2.6) this entails the use of (A 9) 
and (A 11) with N = 1. This gives 

where the operators do, dZa, d2b are defined by 

(4.3) 

These expressions are obtained by evaluating, correct to order e2, those integrals 
in (A 9) and (A 11) which do not containf. do is just the lowest-order form of the 
operator which was found in $3.  dZa is the correction to this arising from the fact 
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that, in passing from the last two integrals in (3.13) to (3.14), or d o f ,  we took ,8 
and a to be & a;  here we have expanded a and p in powers of e as 

a = -a+e2a2+ ..., p = a-e2P2- .... (4.5) 

d2bfresults from the expansion of the integrand. So far we have expanded only 
the integral operator acting on f ( z ,  E ) ,  not the function f itself. 

For the second integral in (2.6) and both integrals in (2.7) it is only necessary 
to operate to lowest order; the work thus proceeds along the lines of $3.  The 
details are given in appendix B, where it is shown that 

2(a2- 2 
)a - 1) g'(z) 

(2 -2) g(h)  d2 22 
ER 

= g(z)  - 2 (In s y ( ( z - ~ ) ~ + E ~ R ~ } %  a - 2  

With these results we can now write (2.6) and (2.7) to second order; (2.6) 

u = d o  f + e2d2af  + e2R2d2bf + gOg, (4.9) 
becomes 

Equation (2.7) is most conveniently written in differential form; this then yields 

(4.11) 
d 
dz = - [ ~ ~ R ~ ( & ~ f ~ f + f ) ]  - 2g(~) ,  

(4.12) 

On substituting this expression into (4.9) an equation for f alone is obtained. 
If we write 

f = f O +  € 7 2  + . . ., (4.13) 

where f o ( x ,  e) is assumed known from Q 3, (4.9) becomes an equation for f2(z, e), 

(4.14) 
namely - & O f 2  = &2afO + R2d2bf0 + go 92, 
where 

(4.15) 
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The method of Handelsman & Keller (1967) may now be applied to  evaluate 
t12 and p2. These are determined by the condition that no singularity occurs a t  
z = a in the right-hand member of (4.14). This gives 

(4.16) 

as z+a, together with a similar condition for z+-a. If we a,ssume analytic 
behaviour for R2, fo and g2 near z = a, so that 

R2 
- W 2 f O ( 4  + ,,fo(z) +92(z)  = O(a - 2) 

P ( z )  = b,(a - x )  + b2(a - z ) ~  + . . . , (4.17) 

fo(z) = c p  + c:”(a - 2) + . . . , 
g 2 ( z )  = dh2) + di2)(a - z )  + . . . , 

(4.18) 

(4.19) 

(4.16) in conjunction with (4.15) gives 

p2 = $bl. (4.20) 

In  the special case of the spheroid (3.19) we obtain /I2 = 4, which shows that 
to  this order the limits of the stokeslet distribution are the foci of the body. It is 
anticipated that this will hold to  all orders, since in this case singularities may 
be expected t o  occur along the singular line of the transformation to spheroidal 
co-ordinates (see Tuck 1964). I n  this special case we can solve (4.14) exactly for 

(4.21) f 2 ;  (4.15) gives 
g2(z )  = -zfo = - Uz/(41n (2/e) - Z ) ,  

and (4.14) reduces to 
- (41n (2/e) - 2) f2 = (21n (a/€) - 2)f0, (4.22) 

assuming f2 independent of x ,  which gives 

u, 2 In (2/e) - 2 
f 2  = - (4 In (2/e) - 2)2 

confirming the above assumption. The drag to this order is 

D =  87rpUa { 1- 4 1 n ( 2 / ~ ) - 3 ~ ~ )  
21n(2/s)-1 41n(2/e)-2 ’ 

(4.23) 

(4.24) 

which again agrees with the results of Lamb (1932). 

5. Axial flow: uniformity near the ends 
I n  this section it is shown explicitly that the stokeslet distribution as specified 

in § 3, but confined to the limits determined in 8 4, in conjunction with the source 
distribution given by (4.12), provides a first approximation valid throughout the 
(Stokes) flow field, provided that the limits of the source distribution are the 
same as those of the stokeslet distribution: 

y2 = %, 4 = p2. (5.1) 

Away from the ends of the body the radial velocity due to the stokeslets is small 
compared to the axial velocity, and the stokeslet distribution of 3 alone provides 
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a first approximation; the sources are required only as a higher-order correction. 
Near the ends, however, the stokeslets and sources make comparable contribu- 
tions, and of course the gaps between the ends of the distributions and the ends 
of the body are crucial. 

We have to verify that (2.6) and (2.7) are satisfied near the ends, to a suitable 
degree of approximation. Assuming 

P ( 2 )  = b1(a-z)+b,(a-2)2+ ..., (5.2) 

f(z) = co+cl(a-z)+ ..., 
g(x)  = d,+d,(a-z)+ ... 

near x = a, (2.6) and (2.7) become 

In each of these integrals the dominant contribution comes from the neighbour- 
hood of 2 = p or 2 = 6;  to lowest order in E we obtain, on equating coefficients 

(5.7) 
of a-x, U = - 2c0{ln (a  - p)  + O( I)} + do/(a - S ) ,  

On using (4.12) to relate do to co, we can conclude that (5.8) and (5.9) are satisfied 

(5.10) 
provided that p2 = 6, = abl. 

Equation (5.7) yields no explicit information, though since co = O[(ln e)-7 it does 
confirm that we were correct in assuming a-p = o(1). 

The work of this section provides an alternative method for determining 
p2 and 6,. Moran (1  963) in his work on the corresponding potential-flow problem 
finds the limits of his source distribution in this way; he points out that, by 
taking higher powers of a - z in his analogue of (5.5) and (5.6), higher approxima- 
tions to p may be obtained. In our work, however, the situation is complicated 
by the presence of two distributions of singularities, which means that (5.5) and 
(5.6) determine p and 6 only when something is already known off and g ;  in 
particular, as we have seen, the determination of p2 and 6, requires knowledge 
of the second-order g2(z). To find p4 and higher terms would require correspond- 
ingly higher-order knowledge off and g. The work of this section does, however, 
determine S,, which is not known from $4.  
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6. Transverse flow 
We now consider the corresponding transverse-flow problem for the slender 

body r = ER(z),  when the incident stream U is in the x direction rather than 
along the axis Ox of the body. We denote by 6 the azimuthal angle measured from 
the x axis. 

It is found that three distributions of singularities are required along the axis 
of the body: a distribution Z(z) of stokeslets with axes pointing in the x direction, 
a distribution m ( z )  of irrotational source doublets, also with axes in the x direc- 
tion, and a distribution n(z) of ‘Stokes doublets’, that is, pairs of infinitesi- 
mally separated equal and opposite stokeslets, with stokeslet axes in the z 
direction and displacement axes in the x direction. This last type of singularity 
does not appear to have been used previously. These three distributions of 
singularities seem to be the correct means for describing the flow, as they lead 
to a system of three linear integral equations, which are independent of 6,  for the 
functions Z(z), m(x) and n(z).  These equations are analogous to (2 .6)  and (2.7) in 
the axial-flow case. 

With foregoing choice of stokeslet and doublet axes, the velocity components 
for a stokeslet at, the origin a,re given in cylindrical co-ordinates by 

for an irrotational source doublet by 

and for a Stokes doublet by 

The incident stream has components ( - U cos 6 ,  U sin 6,  0). The boundary condi- 
tion of zero velocity on the body thus gives us the three integral equations 
for I ,  m, n: 
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(6.5) 

where K ,  A, p, v, p, IT are the endpoints of the distributions. 
The integrals occurring in (6.4) to  (6.6) can be expanded to  lowest order 

(neglecting terms algebraically smaller than the first) along the lines indicated 
in 3 3 and appendix B. As a result we obtain for the lowest-order form of (6.4) 
to (6.6) 

-s,” l (2)  - Z(Z) - (2 - 2) Z’(z) 
(2 - 2)2 

sgn (2 - z )  d2 

2 4 
ER ER 

- - m’(2) + - n(2) + O(s3Z In E ,  em In E ,  6% In E ) .  (6.9) 

Subtracting (6.8) from (6.7)) we obtain 

and (6.7) then becomes 
m(z) = $e2R2Z,(z) +O(s4Z,lns), 

where we have written 
Z(2, E )  = Z0(Z) E )  + E2Z2(2, E )  + . . . 

(6.10) 

(6.11) 

(6.12) 

Equation (6.9) enables n(z) to be expressed in terms of 1,. Comparing (6.11) with 
(3.14) we can see that but for a difference of sign in one term? we could conclude 
that Z,(z) was doublef,(z). Like (3.14)) (6.11) can be solved in powers of (lne)-l, 
and the dominant term will in fact be 2fO1(z), since the difference in sign occurs 
in a term of smaller logarithmic order. 

The total force on the body is a drag in the negative x direction given by 

( ln~)-~+O[(lne)-~]  

This is the term whose sign was calculated incorrectly by Taylor (1969), with the 
consequences described in the introduction. 
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Comparing this result with (3.24) we see that the ratio of the forces in tfhe 
transverse and axial cases is 

(6.14) 

This shows the expected factor 2 for the dominant term; we also have the 
surprising result that the (In e)-l term is also independent of the way in which the 
cross-sectional radius varies along the length. 

In the special case of the spheroid, (6.11) can be solved exactly, as in the axial 
case, yielding 

(6.15) 

D = 8npUa/(ln(2/e)+fr)+O(s21ne),  (6.16) 

in agreement with Lamb (1932). 
To calculate the couple on the body we need to know the local force acting on 

an element of the surface. In fact, to the order to which we work in this section, 
this is just the force due to the local stokeslet strength. To see this, we note that, 
by the same approximation procedure as before, the velocities near the body are 

+0(c2kolnc, r2Z0hr), (6.17) 

+O(e2Z,1ne, r2Zolnr), (6.18) 

qz: = O(e2Z,/r, rZ, In r ) .  (6.19) 

Here we have substituted for m(x) from (6.10). From (6.17) and (6.18) we obtain 
an expression for the pressure: 

p = 4pZ,(z) cos O/r + O(e2Z, In e/r ,  rl, In r ) .  (6.20) 

The viscous stress on the surface is in the 8 direction to lowest order, and is 
given by 

= 4pl,(z) sin B/r + O(e2Z, In e/r,  rl, In r ) .  (6.21) 

Hence the total stress to lowest order is 4pl,(z)/& acting in the negative 
x direction. This gives rise to the total force (6.13) and to a couple 

(6.22) 

which is O[(ln e)-2]. The Stokes doublets do not contribute to the couple to this 
order. If the body is symmetric about z = 0 the couple (6.22) vanishes, a result 
expected from the reversibility of Stokes flow. 

Equations (6.4) to (6.6) can be expanded to second order along the lines of Q 4, 
and there seems to  be no reason in principle why the expansion could not be 
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carried out to any order. The analysis of $ 5  can also be carried out in the 
transverse-flow case; the second-order corrections to the endpoints of the 
stokeslet and source doublet distributions are the same as those found for axial 
flow.? The details will not be given here. 

It is a pleasure to acknowledge indebtedness to Mr L.E.Fraenke1 for his 
guidance throughout the work. The author is indebted also to the Science 
Research Council for a research grant, and to Queens' College, Cambridge for 
a Research Fellowship. 

Appendix A 
In this appendix we give the details of the method for the expansion of the 

integrals occurring in (2.6) and (2.7); we treat the first integral in (2.6). The 
method follows closely the procedure of Handelsman & Keller (1967). 

From the expressions 
Enk = ko+ kJa+  .. . + kn/cn ,  

Hnh = ho+hls+ ...+ h,@, 

(A 1) 

(A 2) 

where the h, and k ,  are obtained from the Taylor expansion 

and the binomial expansion - 

k ( a )  = ( 2 + 5 ) . ( 1 + z ) - g  

= c aj(R2/a2)i ,  say, 
m 

j = O  

we obtain, by induction, 

. 

Hence 

and on introducing (A 3) and (A 4) we find 

(A71 

t Higher-order knowledge of m(z)  is needed to establish this result. To find the end- 
points of the Stokes doublet distribution it would be necessary to solve for &). 
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With s = ccr, we define 

and obtain for the first integral in (3.3) 

where 

( z - a ) / o  
P2n+l = So cr2n+1Yn(cr,z)dcr, 

( a - d b  

0 
Q2n+2 = 1 a2n+2yn(c, 2) dc, 

and where the remainder 8, is bounded by means of (3.10):t 

= A lf(2N+1)l,a,F+lIn(l + ( z - ~ ) / ' E ) .  (A 10) 
Note that the integral defining P2n+l converges since cr2n+1Yn is O( 1) for v+ 0 
and 0 ( r 2 )  for a-too; that for Q2n+2 is O[ln (1 + ( z  - a)/s)] .  The same analysis may 
be applied to the second integral in (3.3); corresponding to (A 9) we have 

where 

and Ifl,l 6 A Ij(2N+l)lmax€2N+1In (1  + ( P - x ) / s ) .  

t Handelsman &, Keller (1967) obtain a sharper estimate for S,, but this is no better 
than our result (A 15) for the total error. 
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The total error SzN + f l z N  is in fact smaller than the foregoing results suggest. 
We have 

where 

Now in (A14), U ~ + T ,  is O ( c r 2 )  for U-+OO; hence for z bounded away from 
a and /? 

In the text it is assumed for brevity that f and its derivatives are all of the same 
order, so that 

S2N + 8, = O(@N+2fln €1. 

X, + f l Z N  = O(E2N+2f(2N+1)) + O ( S ~ + Z  f (w+z)~n B ) .  (A 15) 

(A 16) 

Similar analysis may be applied to the other three integrals in (2.6) and (2.7) 
and asymptotic expansions to arbitrary order obtained for them; it has not been 
thought worthwhile to record the details here. The lowest-order forms are given 
in appendix B. 

Appendix B 
The work of $ $ 4  and 6 requires the expansions of integrals of the form 

ba #($)a2 s bI {(z-2)2+62R2}tn' 

for n = 1 , 3 , 5 .  This can be accomplished to any order by the procedure described 
in $ 3 and appendix A, or slight modifications of it. We require only the lowest- 
order expansions. 

The integrals are decomposed as 

Where the degree of the denominator is one greater than the numerator, as in 
(B 1 )  with n = 1, the procedure is just as in $3;  this gives for the first integral 
on the right 

(B 3) 
whence, with the error improved as in appendix A, we obtain (4.7). 
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Where the degree of the denominator is two greater than the numerator, as 
in (B 2 )  with n = 3, we have to carry the inner expansion of the integrand one 
stage further than the outer, giving 

ds + O(s4 In e), 
b, -"$(z+s)  - $ h ( Z ) - S $ ' ( Z )  _____ 

S2 - -  
which gives (4.6). 

An extension of this idea gives 

$(z + 8) as 
(s2 + e2R2)8 (s2 + e2R2)4 

s as +$,,@) j"-" _ _  s2ds 
o (s2+e2R2)f 0 ( S 2 + € 2 R 2 ) %  

62-2 Q ( 2  + s )  - $ ( 2 )  - S$' (X)  - $s2$"(2) 

+ J O  s3 

whence 

d2+O(s2$lne). (B 6) 
b2 $(a) - $ ( z )  - (2 - 2) $ ' ( x )  - Q(2 - 2)2  $"(z)  

+ s b l  1 2 - 4 3  

Where the numerator and denominator have the same degree, no inner 
expansion at  all is required to  the lowest order; we have simply 

$(z+s)ds+O(e$lne), 

whence (4.8) follows. 

in full here; the work of 8 6 requires only the leading terms: 
The expansion for the integrals with n = 5 are lengthier, and will not be given 
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